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PART – A 

Answer ALL questions.:






(10 x 2 = 20)

1. Define an equivalence relation on a set.

2. Define a binary operation on a set.

3. Define a cyclic group.

4. Define a quotient group of a group.

5. Define an isomorphism.

6. Define a permutation group.

7. Define a division ring.

8. Define a field.

9. Define an integral domain.

10. What is a Gaussian integer?

PART – B

Answer any FIVE  questions.





(5 x 8 = 40)

11. If G is a group, then prove that 

(i) for every 
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12. Prove that anon – empty subset H of a group G is a subgroup of G if and only if

(i) 
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13. If H is a subgroup of a group G, then prove that any two left Cosets of H in G either are identical or have no element in common.

14. If H is a subgroup of index 2 in a group G, prove that H is a normal subgroup.

15. If 
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 is a homomorphism of a group G into a group 
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16. Show that the additive group G of integers is isomorphic to the multiplicative group 
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17. Prove that the intersection of two subrings of a ring R is a subring of R.

18. Find all the units in Z(i).

PART – C

Answer any TWO   questions. 





(2 x 20 = 40)

19. State and prove the Fundamental theorem of arithmetic.

20. a) State and prove Lagrange’s theorem.

b) Show that every subgroup of an abelian group is normal. (14+6)

21. a) State and prove the fundamental theorem of homomorphism on groups.

b) Define an endomorphism an epimorphism and an automorphism.

22. State and prove unique factorization theorem.

(((((((
XZ  13











PAGE  
1

_1268814851.unknown

_1268814980.unknown

_1268815073.unknown

_1268815106.unknown

_1268815146.unknown

_1268815025.unknown

_1268814955.unknown

_1268814700.unknown

_1268814775.unknown

_1268814648.unknown

